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Ergodic-nonergodic phase diagram for a concentrated suspension of charge-stabilized colloids:
Rescaled mean spherical approximation
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We calculate the static structure factor of a concentrated suspension of charge-stabilized colloids using the
mean spherical approximation, and apply the results obtained to determine its dynamical liquid-glass transition
phase boundary within the idealized mode-coupling theory. It is found that the mean spherical approximation
closure may yield an unphysical pair correlation function at the minimum distance of contact even at a high
volume fraction(=0.2) when the coupling strength of charged colloids has attained certain high values. In
addition, we notice that the Debye-Ekel screening constant defined parametrically in one component
model generally differs from that defined in the primitive model. In other words, for a fixed macroion size, the
«x employed in one-component model calculation may be physically unrealistic. Therefore, we rescale the static
structure factor and impose the charge neutrality condition to achieve a self-congistaioe for the one-
component model and the primitive model. As a consequence, we are led to a reasonably reliable ergodic-
nonergodic transition boundary that is applicable to charged colloids having different size and charge distri-
bution. We confine our study to a monodisperse system and employ the effective screened Coulomb potential
of Belloni [J. Chem. Phys35, 519(1986] and of Derjaguin-Landau-Verwey-Overbeek to describe in parallel
the interactions between colloidal particles. Since the screened Coulomb potential can be modeled to describe
a wide range of interactions and has a universal dynamical phase transition loci, our present analysis therefore
provides a practical means for extensive studies of charged colloidal structures and, within the mode-coupling
theory, of the dynamics of very high density colloifiS1063-651X98)14208-3

PACS numbds): 61.20.Gy, 82.70.Dd, 64.70.Dv

I. INTRODUCTION slightly more complicated systems, which include the two-
component charged hard spher¢$8], two-component
The occurrence in a supercooled or supercompressed ligennard-Jones particlel9], binary neutral hard spheres
uid of a dynamical crossovet, (which is the temperature [20], and molecular liquid$21-23. These studies, though
for quenching or density for Supercompres$i"~w’ng well still somewhat Slmpllfled to be realized experimentally, are
above the calorimetric glass transition point has been a suflonetheless quite instructive since the microscopic interac-
ject of current experimental and theoretical interest. Such #0ons that characterize these varied systems provide much
crossover, has been analyzed both in light scatteriagp] p_hyS|caI |n§|ght for_an understanding qf the supercooled lig-
and in neutron scatterini@] experiments, although a consis- Uid dynamics. For instance, a comparison of theof neu-
tent interpretation of the observed dynamic data remainléral and_charged hard-sphere systd& brln_gs to light the
controversia[4]. Theoretically the existence af, was first subtle fine balance between the geometrical hard-core and

oredicted in 1984 by Bengtzelius, @e, and Sjtander|[5] long-range Coulombic influences on the dynamics of super-

who generalized the Boltzmann collision theory for short-cOOIed liquids and hence permits a plausible exploration of
gh q . . d the VI Iy h the cage-diffusive effect, which MCT believes to be the
range hard-core Interactions and the Viasov plasma theomy,q nanism for the liquid-glass transition phenomenon. In

fqr Io_ng—range Coulombic interactions to includ.e the cagey v desire for a broad general study of the dynamics of lig-
diffusive an_d Feynman back row_eﬁects. This so-called,jigs within the framework of MCT, we shall apply the tech-
mode-coupling theoryMCT) was originally developed for pigue of MCT to a study of the ergodic-nonergodic phase
the study of supercooled simple monatomic liquids. Thegiagram for a charge-stabilized colloidal dispersif¥]
MCT, however, was not given much attention at the time itsince its static fluid structure, which is the sole input to
was proposed, but the theory has been ever since in mugiiCT, can be calculated reliably and is available to experi-
dispute[6—8]. Recently there has appeared an increased inmental evaluation in addition to the theoretical verification of
terest in the MCT[9] due mainly to the possibility of com- its universality[25—2§.

paring with experiments its several predictions such as the A charge-stabilized colloidal dispersion such as a poly-
ergodic-nonergodic dynamical transition @¢, the square- electrolyte solution of micelles, or perhaps proteins, etc., is
root temperature dependence near, the spatial-temporal composed of highly charged macroions and singly or doubly
separation of the density-density correlation function near charged small ions immersed in a solvent. This multicompo-
(the B-relaxation procegsetc. Already the idealized glass- nent system exhibits rather complex and generally nonlocal
transition version of the MCT has been applied to the neutrainterparticle interactions, which have their physical origin
hard sphere$10,11, charged hard spher¢d42], Lennard- arising from the high asymmetries of the size and charge of
Jones atomgl3,14), pure liquid metal§15—-17 as well as to  particles. Over the last fifteen years, statistical-mechanical
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theories have played a key role both in uncovering theséioned for some non-negligible colloidal features missing in
varied interactions and in enriching our knowledge of thethe theory. Questions such as the finite size of counterions
intimately associated thermodynamical and structural prop¢co-iong, which would lead to important effects on correla-
erties. In the case of a fluid static structure fac$og) of a  tions between macroions, the low-densjy limit, which
colloidal suspension, which is of direct relevance to ourcasts doubt on its validity at high colloidal concentrations,
present work, there was major and significant theoretical dethe dependence ab(r) on 7, etc., were raised in the lit-
velopment between the mid and late 1980s. erature. In an attempt to remedy these apparent drawbacks
The simplest description for th&(q) of colloids assumes Medina-Noyola and McQuarrie85] compared thebpyy(r) in
the large finite-sized macroioridenoted by subscript 0 here- the OCM with that in the original primitive model, which is
after) as dominant charged patrticles and treats the pointlike model solution with macroions and small ions treated on an
small ions(indexed by 1 for counterions and by 2,3,... for equal footing. Within the MSA, they showed that titgy(r)
co-ions below and solvent as a uniform neutralizing back- of OCM can be deducedxactlyfrom the primitive model
ground and both of these latter entities appear as screenirand, with further analysis, they succeeded in deriving an ex-
constants in the electrostatic potential for macroions. Thigplicit expression for thepyy(r) of two interacting colloidal
well-known one-component Derjaguin-Landau-Verwey-particles embedded in a solution of finite-sized ions. In a
Overbeek DLVO) [29] model gives an effective pair poten- separate work, Medina-Noyo[86] extended the same ap-

tial between macroions proach to the case of a salt-free suspension at any finite col-
loidal concentration but confined his analysis to the “dense
o, r<og point limit” by taking Z;/Z,—0. A theoretically more ap-
_ 1 5282 — —xr 1 pgalmg work was reportgd by Beresfo'rd-.Smlth, Cha.n, and
Podr) =1 Zo'ALee ™ _ ooye r>og, @ Michell [37,38 who applied the prescription of McMillan
r r

and Mayer[39] to construct areffectiveone-component di-
_ ) rect correlation functionc®™(q) [defined by ¢®f(g)=[1
where the Bjerrum length g=e°g/(4meeo), B=1/(kgT)  _1/5(g)]/p,] from an asymmetric multicomponent electro-
and e are the inverse temperature and dielectric constant qg,te system. Specifically they proposed a “jellium” approxi-
the solvent, respectivelyr, (Zo) is the diametetcharge of  mation, which is a simplifying means to describe the corre-
a macroionx = (4mLg3;_1p;Z7) "2 is the Debye-Huakel in-  |ation between a tagged colloidal particle and a small ion
verse screening length in whigh andZ; are respectively the carried out by ignoring at the same time correlations among
number density and charge for small iond=Ap o the remaining colloidal particles. For colloidal particles, they
=expk/2)/(1+k/2) wherek= ko, and finally for conve- obtained agyy(r) with the coefficientA =Ap yo(1l+ 7).
nience in the following discussion we introduce the surfacerurther analysis on the highly charged effect of colloids led
charge parametey= BZ,%/[ meeqoo(2+k)%]eX. Note that them to anasymptoticform of ¢g(r) having the same
Eqg. (1) for A=Ap.yo Was derived by the linearized Debye- Yukawa behavior but with a\ that has to be determined
Huckel equatiori29] under the assumptions of low macroion numerically by solving a differential equation. This “jel-
number densityp,— 0 and of weak coupling between small lium” approximation was improved in the following year by
ions and macroions. In the usual DLVO form the ionic Belloni[40] by replacing the jellium approximation for mac-
strength excludes contribution from the colloid species. Infoions with its discrete counterparts and in this environment
other words Eq(1) does not depend on the macroion volumeaccounted for the macroion—small-ion correlations using the
fraction 7= mogpo/6. However, here we have adopted aanalytical results of Hiroikg41]. For point ions, he suc-
slightly different x, which includes the counterions’ contri- ceeded in “identifying” naturally a one-component Yukawa
bution to the screening length. The same interparticle poterform for ¢oi(r) and derived an analyticallgxactexpression
tial ¢go(r) was obtained by Grimson and Silb¢&0] who for the coupling strengthA. His numericalS(q) results indi-
applied the techniques of the pseudopotential theory and pegated clearly the equivalence between the primitive model
turbation method previously used in the study of the thermoand OCM under certain colloidal conditiortsuch as for
dynamics of liquid metals, and independently bywem, pointlike small ions, significantly large asymmetry in sizes of
Hansen, and Maddef81] who employed the well-known macroions and ions, ejcConcurrently, inspired by the latter
density-functional theory to quantitatively extragty(r)  Work and motivated by their need for an analyti&gdy) for
from the free energy minimum. The latter work has in addi-interpreting measure®&(q), Chenet al. [42] revisited this
tion outlined the steps that should be taken if one were to g@roblem of the equivalence between the OCM and primitive
beyond the linear approximation. model within MSA, they pointed out that th@y(r) given
Despite its qualitative feature, the DLVO one-componentby Belloni is in fact, as in the dilute limit of the DLVO
model(to be abbreviated as OCM hereajfteas been widely theory, the effective direct correlation functicf’(q) of col-
used in the literature to interpret ti86q) of charged stabi- loidal particles without necessity to invoke the MSA closure.
lized colloids obtained from either light scattering or neutronAccordingly they analyzed the mathematical structure of the
diffraction experiments. The main reason for its popularityscreened Coulomb potentigly(r) and exploited the factor
can be attributed to two important works of Haytetral. ZyA appearing in Eq(1) fully. This so-called generalized
[32,33 who successfully derived an analyticg{g) from  OCM has thus been used by them to interpret the observed
doo(r) within the mean spherical approximatidSA), and  S(q) of proteins in place of the usual DLVO theory. In sub-
demonstrated its applicability by applying the derivad)) sequent development, different efforts that aim at more gen-
to study the structures of micellar dispersidBd]. In spite  eral studies of colloidal systems were reported. These in-
of its apparent success, the OCM has, however, been quesluded focusing on the multicomponent nature of colloidal
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systemg43], reexamining quantitatively the effect of high cal near the contact distance and thus needs to be remedied

Z, for macroions and its related consequences on the nonatly a rescaling proceduf83,45,46,4Q In this work we com-

ditivity radii of macroion—small-ion correlatiopd4], incor-  pare the ergodic-nonergodic phase boundaries in the DLVO

porating largery and finite size of small iong45,46], testing ~ and Belloni models determined by the idealized MCT for

various closuref47], simplifying solutions for Yukawa mix- S(d) with and without rescaling. Although it is not the main

tures with factorized coupling constarfi8,43, exploring  Purpose of this work we note that once the phase diagram is

the physical roots for the analytical solutiof9,50, etc. determined, one can calculate readily the mode-coupling

Despite these endeavors, it would be, however, noteworth{gmporal parameter from which other exponent parameters

to mention two earlier works. The first one is the study offollow straightforwardly. The dynamical phenomena of a su-

S(q) by Ronis[51] who applied a mixture of hard spheres in percompressed suspension of charge-stabilized colloidal par-

combination with the Gibbs-Bogoliubov inequality to a sys-ticles nearu. can accordingly be investigated within the

tem of highly charged colloids at a low ionic strength. UsingMCT.

the Percus-Yevick hard-spheres mixture as a reference sys-

tem, he determined the best hard-sphere diameters that Il. THEORY

mimic a suspension of charge-stabilized particles. For the

case of additive diameters, he was able to account for the

experimental5(q); his approach failed for the more realistic  In this section we present the MSA for tHg(q) of

case of nonadditive diameters. The second one, which washarge-stabilized colloidal suspensions. For point ions, the

mentioned above, is a similar calculation by Kretral.[44]  S(q) is analytically available and in conjunction with the

who derived an analytical Yukawa potential for an effectiveidealized MCT will be used to locate the ergodic-nonergodic

OCM for macroions. The most important aspect of this worktransition loci. The dynamics of the supercompressed phase

is that the nonadditive property for the macroion—small-ioncomes as a corollary. For convenience in the following dis-

correlation is explicitly included and was shown by the au-cussion, we give a brief summary of essential equations that

thors to yield a reasonably good description 8§). It ap-  lead to ¢(r) following mainly several recent work87—

pears that thi$(q) theory of Khanet al. is quite successful 40]. In addition, we introduce in the Appendix the method of

for studying theS(q) of the highly charged colloids and convolution, which may be useful in other contexts.

micellar solutions at lowy ; it is not clear if the theory works In the primitive model, one begins with a set of coupled

well for cases of high volume fractions. Nonetheless, bottmulticomponent Ornstein-Zernike equations given by

these calculations clearly point to the importance of

macroion—small-ion correlations in the study of colloid- _ , Nep!

colloid structure. In more recent years, statistigal—mechanical h,J(r)—c”(r)+|:Eo p'f (I =r"Dey(rdr’, @

studies of theS(q) of charge-stabilized colloids have not

progressed very far from the above brief review. There aravherei, j, andl refer to different species.j,| =0 for ma-

more refined works reported that deal with high asymmetriesoions, i,j,I=1 for counterions, and,j,=2,3,... for co-

of particles in both size and charg@r a more recent work ions. Herep, is the number density for species;;(r) is the

see[52]). These calculations generalize or modify the sametdirect correlation function ant;;(r) =g;;(r)—1, defined in

techniques as described above. terms of the pair correlation functiag; (r), is the total cor-
Among all these previous and recent works it appears teelation function. Thus, the primitive model is by construc-

us that the work by Belloni40] contains the essential phys- tion a mixture of charged hard spheres characterized by dif-

ics of a concentrated suspension of charge-stabilized paferent diameters. In the effective direct correlation function

ticles whoseS(q) is needed for our present study of the approach, one can show formallg9] that Eq.(2) can be

phase diagram of the liquid-glass transition. In this paper weontracted to an effective direct correlation functicfj(r),

thus apply the OCM of Belloni and use the analytical solu-which satisfies

tion of Hayter and Penfolfi32] to construct the correspond-

ing OCM S(q). As demonstrated below, there is an apparent , S

inconsistency in the Debye-idkel screening constant?/t/)hen hOO(r):ng(r)erOJ’ hool[r=r")eGo(r)dr’,  (3)

the latter is used as a structural parameter in the CBLty).

This inconsistency, however, can be removed by renormakwhere, in the Fourier-transformed spac%(q) can be writ-

izing the macroion charge and size subject to the conditionen as

of charge neutralization. Once this is done, the physical pa-

rameters in the OCMB(q) are seen to correspond to the ca)=Cog(q) + - [1-C*171-&. 4)

associated colloidal parameters in the more general case of

the primitive model[46]. Accordingly, one can easily pre- In Eq. (4) ¢, is a column matrix defined by

pare aS(q) under specific colloidal conditions and yet retain . R

the simple picture of OCM. Differing from previously pub- (Co)i=pi" (), i=12,... , )

lished works, our study of the liquid-glass transition brings

us to the regime of concentrated colloids at both a high volwhich describes the macroion—small-ion correlatidhgs a

ume fractions(=0.2) and a large macroion charge. Con- matrix, andc* is a matrix giving the small-ion—small-ion

trary to one’s anticipation, we find that, for finite<0.43,  correlations, viz.,

and depending on the strength of the Coulomb repulsion, the Y 12 1/ o

MSA for the pair correlation function may become unphysi- (C9)ij=pi pj Gj(a), 1,j=12,... . (6)

A. Mean spherical approximation
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For pointlike ions, the direct correlation functias (r), i,]
=0,1,2,... can be written in terms of the short-rang(ar) as
[41]

ZZL
Ci(N=cj(n) - ==, >0 (7)
wherecgy(r)=0 for r>o, and
Cisj(r)IO (i,j=1,2,...) r>0, (8)
cgi(nN=0 (i=12,...) r>oy/2. 9

If we take the Fourier transform of Eq&) and (9), apply
them to Eqs(5) and(6), and substitute the results into Eq.
(4), we obtain

[ag+Zi_1aich(a)]?
q2+K2

682(q>=680(q>+§1 [ci(a)]?—
(10)

Here, a?=4mLgp;Z? and k=(Z;_,a?)Y2 Next, we per-
form the inverse Fourier transform of E.0); the first and
second terms vanish identically for- oy while for the third
terms they can be convolutddee Appendix for detailsto
yield

—KI

cfiry=—2z2LgX? —, r>oq, (12)
where
X= k U K K i k) 12
=C0S > + Ecos > —sin > (12
in which
85 2v 13
with
37
=1 (14)
_ FO’o/2+8 15
YT 14T o2+ 6 (15
and
2
o
2=« 2 (16)

T A T2t 02

GivenZ,, oy, k, and#, Eg. (16) has to be solved iteratively
for I" and henceX in Eq. (12). It is interesting to note that
X— ApLyo in the limit p— 0. On the other hand, for a given
X, Eqg. (11 is similar in form to Eqg.(1) and as was pointed
out by Chenret al.[42] Eq. (11) resembles the MSA closure

gij(r)=0, (17
Cij(r)=—pB¢;(r), (18

r<0ij ,

r>0'ij
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if one identifies the right-hand side of E¢ll) to be an
effective interparticle potentia,B¢Sg(r) for macropatrticles,
and definesog;=0y/2. This identification is natural, and
practically, it is necessary and convenient since analytical
solution[32,33 of S(q) within MSA exists. Note that Eq.
(18) in the form defined is customarily considered as a lin-
earized closure relation, which is correct for a low charged
system and becomes less reliable for polyelectrolyte systems
at low concentration. It was, however, implicit in the works
of Beresford-Smittet al. [37], Belloni [40], and Cheret al.

[42] that, within the effective direct correlation function
scheme, such basic assumptions can be relaxed. Thus the use
of Eg. (11) does not necessarily imply a case for a polyelec-
trolyte system of low concentration since the nee@¢q)

can be obtained by

1

S(Q)ESOO(Q):—W,

= 19
[1-poCoo (19

which is essentially a OCM.

B. Mode-coupling approximation for a colloidal dispersion

The MCT focuses on the time-dependent density-density
correlation function defined by

F(q,t):<5n(q,t)5n(_q,0)>,

where én(q,t) is the Fourier transform of the microscopic
density fluctuationsn(r,t) and( ) is the usual ensemble av-
erage. This function spatially contains useful information on
the local structure of colloidal particles and temporally ac-
counts for its time evolution. Defining the Laplace transform
by F(qg,2)=/;dt exd—zf]F(q,t) and neglecting_hydrody-
namic interactions, it can be sho27,26,23 thatF(q,2) is
related to a memory functiokl(q,z) by [53]

(20

F(aq,z) 1

S(q)  z+w(q)[1-M(q,2)/(g2Dg)]’
21)

R(q,2)

wherew(q)=q°D,/S(q) andDy, is the Stokes-Einstein dif-
fusion coefficient of a single particle. As discussed 2],
F(q,t) consists of a short-timer,>t> 15, where for typical
aqueous colloidal suspensiong~10 °-10%s and 7,
~10"%s) decaying component representing a Brownian-
type motion and of a long-time# 7|) slowly decaying part
I1(q,t) characterizing collective nonlinear couplings of the
sluggish behavior oF (q,t). It was pointed out, however, by
Cichocki and Hes§26] that the memory functioM(q,z) in

Eqg. (21 is not an elementary memory function in the study
of dynamic properties of colloidal particles since its time
evolution operator is not one-particle irreducible. By com-
paring the generalized dynamic viscosity obtained from a
generalized Smoluchowski equation and a Fokker-Planck
equation, they were able to derive a formally exact relation
betweenM (g,z) and an irreducible collective memory func-
tion M(q,z). Now, at high densities, the slowly decaying
componentM(q,z)~II(q,t) is manifestly dominant com-
pared with the short-time contribution. In fact it can be in-
ferred from the works of Szamel andWwen[25], Bauret al.
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[27], Kawasaki 28], and Bengtzeliugt al.[5] that an ideal-
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following the recipe of Sheet al. [56] and of Hansen and

ized liquid-glass transition sets in at a dynamical transitionrHayter[33]; we deduce for pointlike ions thg,, o4, and

point u. if there exists a solutiorf.(q) for the following
nonlinear vitrification equation:

f(a) S(q)
1=f(q)  Dyg? M@t=2)=F(f()). (22

The f.(q) =R(g,t—»)#0 is the Debye-Waller factor cor-
responding to the nonergodic state wherégg) =0 is the
ergodic state. We note th&{q) can be compared directly

associated quantities in the OCM of Bellopd0] under
physically reasonable conditions.

A. S(qg) in rescaled mean spherical approximation

As pointed out in the Introduction, we will encounter a
situation where the pair correlation functigfr) may be-
come unphysical at the minimum distance of cont&ct
=1"% where we defineR=r/o,. This unpleasant feature

with experiment since it corresponds to the form factor forarises from the inadequacy of MSA in accounting for the
the elastic part of the coherent spectrum in neutron scatteringflort-range correlation. To overcome this inherent defi-
experiments. This function also accounts for the nondiffusiveciency, both the numerical method of Bellddi0] and Sheu

states as the liquid phase approaches the glassy region.

al. [56] and the analytical formula of Hansen and Hayter

making a two-mode approximation as in atomic liquid [33] were attempted. For the numerical means, we proceed
[54,5, the more fundamental long-time memory function @s follows. First, the analytica#(q) of Hansen and Hayter

I1(q,t) can be derived to red®5,27

Dopo

o x-+al x2—y?
0.0 52 [T ayy 52 o0 -ctn

2
31600+ cy)]| SOSHRIORY,
23

wherec(q) is the direct correlation function. It should be
emphasized that Eq23), which is derived for a colloidal

suspension, has exactly the same form as that for an atomR

liquid (cf. Eq.(19) [25] with Eq. (2.4) in [55]). GivenS(q),

Egs. (22) and (23) constitute the two coupled equations,
which will be used below to locate the liquid-glass transition

loci.

Ill. NUMERICAL RESULTS AND DISCUSSION

We now apply the effective direct correlation function

cefir), which is identified to be an effective potential

—,Bqﬁgg(r) by Eq.(11). This defined potential encompasses ayhere D,
remarkably rich phase behavior with fluid structures exhibit- "

ing very short-rangedcharacterized by the hard-coog or
the volume fractiony= mo3p,/6), intermediate-rangeic-
tated by the screened Coulomb paramé&ter o), and very
long-ranged(described by the charg#,) interactions. Now

[33] at (#,k, y) is Fourier transformed to obtain thyr). If
the macroions at contact are positive, igfR=1")>0, we
accept theS(q), otherwise we employ the rescaling tech-
nique by increasingy to »' =7+ A#n and accordinglyk’
=k(7'/9)*® at the same coupling constanty’
=9(n/7")Y3 Next, the rescaled(q) is Fourier trans-
formed again andj(R=1") is examined. If it is negative,
we repeat the procedure by increasing. If, however,
g(R=1")>0 we choose a smallek» and repeat the nu-
merical computation foB(q). The calculation proceeds until
the criteriong(R=1%)=0 is achieved. It should be empha-
&zed that this rescaling scheme automatically guarantees the
coupling constani\ in either the Belloni or DLVO model to
remain unchanged. In other words, the rescaling only applies
to the macroion-macroion correlation so that the potential
¢gg(r) for distance greater than the rescaled size is unper-
turbed, and any macroion-ion correlation should not be per-
turbed during the renormalization. For the analytical means,
we apply the formula
9,(R=1")=—(py+p,C+psF), (24)
C, and F are coefficients defined in terms of
(7.,k,v) [33]. The rescaling parameterg(,k’,y’) are de-
fined as described above except that their values are deter-
mined by resorting to Eq(24) andg,,(R=1%)=0. In all
our calculations these two methods agree almost exactly. As
a means to assess the present model, we depict in Fig. 1 our

in order to locate the ergodic-nonergodic transition loci byyescaled MSA(RMSA) S(q) compared with that of the

solving Egs.(26) and (27) iteratively and self-consistently

hypernetted-chain closuf&7] and with that of Senatol&8]

for fc(q), we need the fluid static structure factors of Eq.sing the model of Khaet al. [44]. These results show that

(11). Within the MSA for pointlike small ions the latter can

the present model of Belloni is as good a choiceS6q) as

formally be calculated from the primitive model whose the |atter.

structure factor was shown by Bellof#0] to be exactlythe

same as that in the OCM. The calculation, though theoreti-
cally straightforward when applied in conjunction with the
MCT in deducing the parametric phase diagram, is, however, To begin with we consider a concentrated suspension of
useful only for specific colloidal suspensions. In view of this charge-stabilized colloids described by parameters typically
we have resorted to a more general means by employing thencountered in aqueous macroion solutions, namély,
OCM S(q). Strategically, one starts first by applying the =298 K, e=78.3, andoy=5 nm. Under these physical con-
idealized MCT to determine the phase boundary of thelitions, we start with the strong screening case6 and for
OCM-type potential given by Eq1) whose static structure # in the range 0.55 »>0.15 vary y for selected» until
factor[32] is uniquelydetermined for properly scaled param- nonergodic solutions are found. In the parametric space of
eters (7,k,y). Then, from the determinedz(,k.y:), we  (#,k,y) this procedure traces out the dynamical transition
examine the necessity of rescaling for macroions at contadoci w.=(7..K;,7:) Separating the ergodic reginigq)

B. Ergodic-nonergodic phase diagram
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FIG. 1. Static structure factd®(q) of a suspension of charge-
stabilized colloids obtained using the method described in(fakt y T ¥ T " T
curve with the approximate treatment of the finite-size effect for
counteriong40] compared with those calculated from hypernetted- 55 L . i

chain closurg57] (open squargsand from RMSA model of Sena- Y
tore[58] (closed circles The latter twoS(q) are read directly from .
Fig. 2(b) of Ref. [58]. Parameters used are,/o;=50/5A, 04 - T
Zo!Z,=—40/e, andpy/p;=2.5<10"3/100X 10" 3M . i ° s
M.03 | . s .

=0, 7— y<7.— ¥ from the nonergodic regimé,(q) #0,
n—¥=1n.—7Y.. The same numerical process was repeatec 0.2
for a weak screening cage=3. Figures 2a) and Zb) show i
our results of computations for the above two cases. Fron g4 | -
these figures it was found, however, tligR=1")<0 for
17.=0.43, which implies an inadequacy &{q), although 0 , ) ) . ,
Egs.(22) and (23) less reliably predict a loci of nonergodic ) 20000 40000 60000 80000
form factors. In view of this unsatisfactory drawback, we (b) Ve

first apply the rescaling scheme to theXe]) and check for
each (7,k,y) the magnitude of the eigenval@equal to one
at u) to see what changes should be madeytdThen, at
givenk. and 7., we varyy by y+Ay. This set of param-
eters (. ,Ke,y+Avy) are then subject to the rescaling pro-
cess andy, is subsequently located by substituting the res- 04
caledS(q) at (',k’,y") into Egs.(22) and (23). The 7, N .
thus calculated are displayed in the same Figs). @nd Zb). .03 |+ . 1
Note that for a Yukawa potential and for properly scaled Lo s
parameters these tw@.—7, curves areuniversal Thus, 0.2 ke ‘ N 4
givenk=3 or 6, one may read from Figs(& and 2Zb) the . .
one-to-one correspondence betwegnandy,.

At this point we should draw attention to an apparent
inconsistency in both Figs.(@ and Zb). The inconsistency
lies in the use of fixedro=5 nm, which, for anyz., will 00 20000 20000 60000 80000
yield a Debye-Hukel screening constant=k/ o that when ©) o
evaluated at eithék=3 or 6 generally differs from the for-
mula K:[47TLBEizlpiZi2]1/2 (supplemented by the charge  FIG. 2. (a) Volume fractiony, vs surface charge parametar
neutralization conditiopy,Zy=p;Z;). Such a difference ix ~ for screening parametér=3 in MSA (circles and in RMSA (tri-
arises from the less quantitative nature of the O@idtably ~ angles. (b) Same asa) but fork=86. (c) Comparison of the loci of
for the DLVO approximationand is implicit in several re- Phase diagrams fdr=3 (circles andk=6 (triangles.
cent theoretical models proposed in the litera{®®. Physi-

Ca”y this would Imply that the value for the macroion size atk=3 or 6, and for each Se|ect9ﬂ:, these parameters are
oo andZ, needs readjustments in order to compensate fofg) substituted in the Belloni model into Eq€l2)—(16) to
the difference in. Technically this can be accomplished by solve iteratively forx() and (b) employed directly in the
preparing for a list oy in the range 18 ¢J’<6000 A the  DLVO model to obtainA p yo . Next, we read from Fig. @)
sequence of parameteysy’=67./(7ol’®), «D=kia{’  or 2(b) the y; that corresponds to the specifig, and in
andz{) (via k=[47Lg3_1piZ21*? and p{’z{’=p,Z;)  conjunction with the coupling strengfi; of Eq. (11), i.e.,

T

e 00 o
>
1

0.5

01 4
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1 T T T L] T T
Tnput (1, k,7)
Set Ac=10"3A~10"1A 05 | . . i
choose an initial G, : N Lt
.. '
l 04 . . .
At jth step . .
6/’=0, +j Ac ]
X9 =K/ a7’ M:03 | . . N
pf,"’=6n/(1|:6},"’3) 0.2 . N -
Z¥= ¥ 14 1L, 02, ) )
via pPZ{ =p,Z,) o1 L ]
]
r l 0 0 1 1 L 1 1 1 1 1 n
Belloni DLVO . 0 1 2 3 4 5 6 7 8
Substitute p{”,0",Z{” into A
Eqgs. (12)-(16) , and solve for X' Apvo=¢€ w2 /(1+ k/2)
A=XP A=Apy FIG. 4. Volume fractiony, vs coupling parametek [Eq. (1) in
{ T ] text] which is X (circles in Belloni model andA p, vo (full curves
in DLVO model for casesk=3 (left curves and k=6 (right
For the same coupling constant 'Y curve 3
L, (AZ;”)?=Y o
calculate with k and with the macroion charge ang . It would, how-
2,V = (Yo [L, A? )12 ever, be more instructive and concrete if these dependences
az,7<] 2,7 2 | hmin{ 2, 2,y were analyzed in terms of specific models, nametfy.
| =Zy°X?Ly for the Belloni model andrgy.=Z5°A% vol s
check N for the DLVO model. We show in Fig. 4 the change gf
(#2] - =] . . . .
az,” <107 il with X or Apyo at k=3 and 6. There are distinct differ-
Yes ences in these coupling constant&-decreases in magnitude
| k=i | and approached p yo as 7. decreases whereaSp, vo,
which is a function only ofk, is independent ofp.. To

set physical parameters | interpret the quantitative changes in thg . curves withk
(cmpa’za)=(°'a sPe rZo ) . . . .
one needs, however, to consider the variatiomgfvith the
. . o macroion charge as well as witH;,. Figures 5 and 6 display
FIG. 3. Flow chart showing the procedure in achieving a self-the details of these structures. It is readily seen in Figs. 5

consistent Debye-Hikel screening constant. Values of macroion gnd 6 that ak=3 although drastic differences are observed
charge and size for DLVO and Belloni modefsee text are ad- h I c c_ —c 5¢ ;¢
between the rescaleg.—Z; (oq—2Zg) and n.—Z; (og

justed to satisfy charge neutralization condition. —c . 2 ¢ S2, C

—Z{), the associated change 8§/ o or Zg%/ o (with 7)
Zg)’2A(J)2|_B: o)y, extract thezgi)' . This ZE)”' is com-  on which?, is directly proportional does not vary greatly in
pared with thez{’ and the whole procedure is repeated forMagnitudefor both OCM (see Fig. J. On the other hand,
eachag” in the list until the criteriodzgj)—zgj)'|s10‘7 i Figs. 5d) and 6 between the corresponding quantities at

: . : - . =6 differ much less severely but both the Belloni and
achieved. Figure 3 is the fI_ow cha_rt dlctatlng the details OTJISLVO models show a strong enhancementiiagnitudeof
the procedure. Note that, in the list-searching process, w

c2; ¢ —c2; ¢ ; ;
consider only counteriongeach with ionic charge,;=1e) the Zy*/ag or Z5"/og compared with the weak screening .
for the ionic strength inc, and thew is relaxed to ensure the cases. These dependences thus account partly for the varia-

. - . . tion of . with 7. in either the Belloni or DLVO model. As
hase diagram associated with te@mecoupling strength e Ye
% g Ping g regards the second feature, it can be explained by the physi-
C

cal significance ok, which is a screening parameter deter-

We now comment on Figs.(@ and Zb), which give the . . L .
variation of . with .. We note two general features. First mined sensibly by the ionic strength of small ions now play-
¢ ¢ '.ing the role of charge stabilizing the macroparticles. Since

for the two screening cases of interest here one notices qui{E k=6 d lati foni

substantial difference in the ergodic-nonergodic phasé € Cas&=6 correspon ;to a gr_eater accumulation ot lonic

boundaries for the MSA with and without rescaling. For thedenSIty f_or the Coulomb interactions between macroions to

MSA, after an initial decreasing tendendfor 0.51> be effectively screened out, and that the above results for the
l " Cc

=0.43, 7, changes abruptly fok=3 and is almostyinde- X (ApLvo) and Z(C)_Z/US (282/0_8) clearly point to a marked
pendent fork=6. This behavior is in contrast to the RMSA increase in magnitude Gf; with k, it is thus reasonable to
where 7, decreases monotonously for the whole range off€€ the strong screening case occupying a larger ergodic re-
values 0.5>7.,=0.15. Second, as Fig.(@ shows, the er- 910N. . o
godic region for the strong screening case has an extensive 10 Pursue our analysis further, we now scrutinize in
region whereas in the weak screening case its domain is rel@reater detail Fig. @) for the change ofy. with chargeZg

tively more restrictive. The first general feature for the determined byy=Z5X?Lg/0 and Fig. b) for the change
RMSA can be understood from two facets—the changgin of 7. with chargez$ deduced fromy=Z?A3,,cLg /0. In
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FIG. 5. (8 Volume fractiony. vs macroion charg&g (in units of electronic chargen the Belloni model for screening parametérs
=3 (circles andk=6 (triangle_s. (b) Same aga) but for th e DLVO model(c) Comparison of the volume fraction, vs macroion charge,

Z; for Belloni (triangles, andZ§ for DLVO (circles models atk= 3. (d) Same agc) but for k=6.

addition, we examine also within the context of RMSA the actly taken into account for pointlike ions through Eg0)
relationsZ§— o and Z§— 0§ given in Figs. 6a) and @b).  and which has resulted in the strong dependenceg @i Z
Two distinct aspects are observed. (via the functionX). For the casek=3, ionic screening is
(@ The RMSA results forp.-Zg curves in the Belloni comparatively less effective, which will thus increase the
model displayed in Fig. @) for the strong and weak screen- macroion charg&g. This ineffective screening effect far-
ing cases decrease monotonously and span ove=Z§  ther enhancedy the strong dependence Xfon 7 [in con-
=396 for k=3 and ?,_1_352°s414e for k=6. In contrast, trast to the DLVO model whereAp vo=expk/2)/(1
the correspondingy.-Z§ curves in the DLVO model de- +k/2)], since the presence of other macroions has the con-
picted in Fig. %b) for the strong screening case decreasesequence of decreasing the screening ability of small ions
monotonously while that for the cade=3 it is virtually  [40] (and hence increasingf). Structural changes are there-
unchanged fom,=0.43 and becomes nearly independent offore induced by a delicate balance between the hard-core
7 for .<0.43. As a result the weak screening c&se3 repulsion and strong electrostatic coupling particularly near
associated with the DLVO and Belloni models shows ahigher volume fractions. For the DLVO modé\p o does
marked difference in Structurégig. aC)] CompaTEd with the not depend oy and thus has no relevance Z@ The geo-
strong screening casgsig. 5(d)]. metric hard-core factor in this weak screening case domi-
(b) For each7.-Zg phase boundary given in Fig(® nates the structure fay.=0.43, but its role is taken over by
each dynamical transition pointf,Z5) corresponds to &g  the Coulomb repulsion for.<0.43, which is found to be
[Fig. 6(a)] determined as described in Fig. 3, while those ofindependent of;. On the other hand for the Belloni modél
ne-Z§ [Fig. 5(b)] the correspondingr are given in Fig. deviates fromAp, o and has a robust dependencespfand
6(b). As can be seen easily the magnitudeogffor k=3 is  henceZg), which is manifested by an effective influence of
significantly larger than the case=6. the electrostatic coupling compared with the excluded vol-
The origin of the first aspect can be traced to the correlaume effects. This explains the marked difference in behavior
tion between macroions and small ions, which was here exfor the two weak screening cases given in Fifc) 5Never-
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500 . T . T , T - FIG. 7. Volume fractiony, vs electrostatic potenti&t, which is
C=Z2% o} for Belloni or C=25%/c§ for DLVO at k=3 in the
Belloni (triangles and the DLVO(circles models compared with
400 - Te L. e e T those atk=6 in the Belloni (plussey and the DLVO (squares
.\ * ] models.
300 | ’ ] the comparatively larger effective screening effect has con-
Zs ' ] siderably weakened the Coulomb repulsi¢asd henceZg
000 | ’ * | or Zg) between macroparticles and the, increases less
* wildly. It should be emphasized that such a change-jris
. . to rectify the inconsistency of the OCM for the inverse
100 b ; i screening length and should not be confused with the res-
s caling idea proposed by Hayter and Hang&8J for handling
' the dilute dispersion of colloids at strong electrostatic cou-
0 - L L - ' : pling. The former leads to a real physical size of a macro-
0 1000 2000 3000 4000 particle whose value was adjusted even at higwhile the
(b) Go latter describes a macroparticle surrounded by an impen-

. . . . e.
FIG. 6. (8) Macroion chargeZg vs macroion sizeo§ in the etrable volum

Belloni model determined as described in the flow chart of Fig. 3
for screening parametets=3 (circles and k=6 (triangles. (b)
Same aga) but for the DLVO model. The structures of concentrated charge-stabilized colloidal

hel L . K that for both K dispersions were investigated using the OCM in the mean
theless, Itis interesting to remark that for both wea SCreeN3pherical approximation. Within the idealized mode-

ing cases in Fig. ®), asy decreases to lower values the role . 5|ing theory, the loci of the liquid-glass transition phase
of intermediate- and long-ranged interactions manifests, angondaries were determined. It was found that for
structural changes are now characterized by the relative im= 43 and for strong Coulomb coupling tigér) at contact
portance of these latter two factors. This accounts for thgjisiance in the MSA becomes unphysical and needs to be
general tendency of merging for the setigfZg and 7:-Z5  rescaled. Both theS(q) with and without rescaling were
curves ak=3 asn decreases. Turning to the cdse6 [Fig.  compared to manifest the inadequacy of the MSA closure in
5(d)], here we have relatively many small ions surroundeche specific region of parametric phase space. In attempting
the macroparticles, and the effective screening effect wilko explore the usefulness of the OCM, we notice an apparent
tend to reduce the subtle role &§, making its contribution inconsistency in that the Debye-Ekel screening constamt
to structure inconsequential. One would therefore expedhat is defined parametrically in OCM generally differs from
qualitatively similar structures for the Belloini and DLVO that defined in the primitive model in terms of physical pa-
models with finer details being quantitatively embellished byrameters. In other words, for a given macroion size, #he
the » dependence oX. employed in the OCM calculation may be physically unreal-
Coming to the second aspect, this can be explained dstic. Removal of the latter inconsistency has led us to an
follows. For the cas&=23 the ionic screening effect leads to ergodic-nonergodic phase diagram corresponding to macro-
a relatively stronger electrostatic force and this would implyions of different size and charge distribution. Finally, we
a larger macroion chargéand hence a longer interaction compare generally the widely used DLVO model and the
rangg, which then acts to degrade the role of geometric hardnore refined model of Belloni. We judge from our calculated
core. For a given surface charge parametethe oo must  phase diagrams that the OCM of Belloni is physically sound
increase enormously at a constantwhich must be so since and appropriate for extensive studies of charged colloidal
the latter physically accounts for the macroion-ion correla-structures and, within the mode-coupling theory, of the dy-
tions. This, however, is in opposition to the c&se6 where  namics of high density colloids.

IV. CONCLUSION
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APPENDIX

In this Appendix, we derive the effective direct correla-
tion functioncgg(r) by the method of convolution. We begin
with the convolution of functionsi(r) anduv(r) defined by

G(ww)= [ v(Hur- s (A1)

For the problem at hand;&f(r)=G [ cgereral ¢q)] for r
> o, Which can be obtained using the formula

—KI

1 -1
Po
defining Wq(r)= aé@(r) W (r)=2aqa;®(r), and W;(r)

=a;a;0(r), and recalling thatcoo(r) cgi(r)=0 for r
> 0. Accordmgly an expression fcn’go(r) can be derived

4mpo

2| =0(r)= (A2)

q2+K r

Co(1)=Wy(r)+(popi) YAW,oCj;

+(popi) AWz {(pop) VA ciioch T} (A3)

&m ﬂm(ff &6
€)cg;(6) —— dédo
m
e ~
éu=a =2 ZJ &0
cj+—| —déde
m=r—aJ fy=r—¢ o) r
év=a [Oy=a Ev=T oy=2a
+27 f
m=r JO0p=§&-r m=a—rJon=r—¢
Eu=a—r [Oy=r+¢& Zi &0
+f f i+ — cj+— — dédo
Em=0 Om=r—¢ g 0 r
év=a ov=a Ev=a—r [Oy=£&+r
+2m [
m=a—rJon=£&—r Em=r On=§&—r
Eu=r [Ou=&+r Z- 2,— &0 de do
Ci+—| — ,
=0 J op=r—¢ § el

(A4)

where Zi=ZoZiLg; Ci=1/(n—1)~vZ/a [41]; &y, &m,
6y, and @y, are the limits of integration variables subject to
the constraint >a. Similarly

§M a GM I'+§
G[Wyocd 1= 2wf f
On=r—¢§
><e7Kr +Z gad déo
| Gi e T £ do,

and G(W3°C) is obtained by convoluting EqgA2) and
(A4).
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