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Ergodic-nonergodic phase diagram for a concentrated suspension of charge-stabilized colloids
Rescaled mean spherical approximation
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We calculate the static structure factor of a concentrated suspension of charge-stabilized colloids using the
mean spherical approximation, and apply the results obtained to determine its dynamical liquid-glass transition
phase boundary within the idealized mode-coupling theory. It is found that the mean spherical approximation
closure may yield an unphysical pair correlation function at the minimum distance of contact even at a high
volume fraction~*0.2! when the coupling strength of charged colloids has attained certain high values. In
addition, we notice that the Debye-Hu¨ckel screening constantk defined parametrically in one component
model generally differs from that defined in the primitive model. In other words, for a fixed macroion size, the
k employed in one-component model calculation may be physically unrealistic. Therefore, we rescale the static
structure factor and impose the charge neutrality condition to achieve a self-consistentk value for the one-
component model and the primitive model. As a consequence, we are led to a reasonably reliable ergodic-
nonergodic transition boundary that is applicable to charged colloids having different size and charge distri-
bution. We confine our study to a monodisperse system and employ the effective screened Coulomb potential
of Belloni @J. Chem. Phys.85, 519~1986!# and of Derjaguin-Landau-Verwey-Overbeek to describe in parallel
the interactions between colloidal particles. Since the screened Coulomb potential can be modeled to describe
a wide range of interactions and has a universal dynamical phase transition loci, our present analysis therefore
provides a practical means for extensive studies of charged colloidal structures and, within the mode-coupling
theory, of the dynamics of very high density colloids.@S1063-651X~98!14208-3#

PACS number~s!: 61.20.Gy, 82.70.Dd, 64.70.Dv
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I. INTRODUCTION

The occurrence in a supercooled or supercompressed
uid of a dynamical crossovermc ~which is the temperature
for quenching or density for supercompressing! lying well
above the calorimetric glass transition point has been a
ject of current experimental and theoretical interest. Suc
crossovermc has been analyzed both in light scattering@1,2#
and in neutron scattering@3# experiments, although a consi
tent interpretation of the observed dynamic data rema
controversial@4#. Theoretically the existence ofmc was first
predicted in 1984 by Bengtzelius, Go¨tze, and Sjo¨lander @5#
who generalized the Boltzmann collision theory for sho
range hard-core interactions and the Vlasov plasma the
for long-range Coulombic interactions to include the ca
diffusive and Feynman back flow effects. This so-call
mode-coupling theory~MCT! was originally developed for
the study of supercooled simple monatomic liquids. T
MCT, however, was not given much attention at the time
was proposed, but the theory has been ever since in m
dispute@6–8#. Recently there has appeared an increased
terest in the MCT@9# due mainly to the possibility of com
paring with experiments its several predictions such as
ergodic-nonergodic dynamical transition atmc , the square-
root temperature dependence nearmc , the spatial-tempora
separation of the density-density correlation function nearmc
~the b-relaxation process! etc. Already the idealized glass
transition version of the MCT has been applied to the neu
hard spheres@10,11#, charged hard spheres@12#, Lennard-
Jones atoms@13,14#, pure liquid metals@15–17# as well as to
PRE 581063-651X/98/58~3!/3072~11!/$15.00
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slightly more complicated systems, which include the tw
component charged hard spheres@18#, two-component
Lennard-Jones particles@19#, binary neutral hard sphere
@20#, and molecular liquids@21–23#. These studies, thoug
still somewhat simplified to be realized experimentally, a
nonetheless quite instructive since the microscopic inte
tions that characterize these varied systems provide m
physical insight for an understanding of the supercooled
uid dynamics. For instance, a comparison of themc of neu-
tral and charged hard-sphere systems@12# brings to light the
subtle fine balance between the geometrical hard-core
long-range Coulombic influences on the dynamics of sup
cooled liquids and hence permits a plausible exploration
the cage-diffusive effect, which MCT believes to be t
mechanism for the liquid-glass transition phenomenon.
our desire for a broad general study of the dynamics of
uids within the framework of MCT, we shall apply the tec
nique of MCT to a study of the ergodic-nonergodic pha
diagram for a charge-stabilized colloidal dispersion@24#
since its static fluid structure, which is the sole input
MCT, can be calculated reliably and is available to expe
mental evaluation in addition to the theoretical verification
its universality@25–28#.

A charge-stabilized colloidal dispersion such as a po
electrolyte solution of micelles, or perhaps proteins, etc.
composed of highly charged macroions and singly or dou
charged small ions immersed in a solvent. This multicom
nent system exhibits rather complex and generally nonlo
interparticle interactions, which have their physical orig
arising from the high asymmetries of the size and charge
particles. Over the last fifteen years, statistical-mechan
3072 © 1998 The American Physical Society
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theories have played a key role both in uncovering th
varied interactions and in enriching our knowledge of t
intimately associated thermodynamical and structural pr
erties. In the case of a fluid static structure factorS(q) of a
colloidal suspension, which is of direct relevance to o
present work, there was major and significant theoretical
velopment between the mid and late 1980s.

The simplest description for theS(q) of colloids assumes
the large finite-sized macroions~denoted by subscript 0 here
after! as dominant charged particles and treats the point
small ions~indexed by 1 for counterions and by 2,3,... f
co-ions below! and solvent as a uniform neutralizing bac
ground and both of these latter entities appear as scree
constants in the electrostatic potential for macroions. T
well-known one-component Derjaguin-Landau-Verwe
Overbeek~DLVO! @29# model gives an effective pair poten
tial between macroions

bf00~r !5H `, r ,s0

Z0
2L2LBe2kr

r
5

s0ḡe2kr

r
, r .s0 ,

~1!

where the Bjerrum lengthLB5e2b/(4pee0), b51/(kBT)
and e are the inverse temperature and dielectric constan
the solvent, respectively;s0 (Z0) is the diameter~charge! of
a macroion;k5(4pLB( i 51r iZi

2)1/2 is the Debye-Hu¨ckel in-
verse screening length in whichr i andZi are respectively the
number density and charge for small ions;L[LDLVO
5exp(k/2)/(11k/2) wherek5ks0 and finally for conve-
nience in the following discussion we introduce the surfa
charge parameterḡ5bZ0

2/@pee0s0(21k)2#ek. Note that
Eq. ~1! for L[LDLVO was derived by the linearized Debye
Hückel equation@29# under the assumptions of low macroio
number densityr0→0 and of weak coupling between sma
ions and macroions. In the usual DLVO form the ion
strength excludes contribution from the colloid species.
other words Eq.~1! does not depend on the macroion volum
fraction h5ps0

3r0/6. However, here we have adopted
slightly different k, which includes the counterions’ contr
bution to the screening length. The same interparticle po
tial f00(r ) was obtained by Grimson and Silbert@30# who
applied the techniques of the pseudopotential theory and
turbation method previously used in the study of the therm
dynamics of liquid metals, and independently by Lo¨wen,
Hansen, and Madden@31# who employed the well-known
density-functional theory to quantitatively extractf00(r )
from the free energy minimum. The latter work has in ad
tion outlined the steps that should be taken if one were to
beyond the linear approximation.

Despite its qualitative feature, the DLVO one-compone
model~to be abbreviated as OCM hereafter! has been widely
used in the literature to interpret theS(q) of charged stabi-
lized colloids obtained from either light scattering or neutr
diffraction experiments. The main reason for its popular
can be attributed to two important works of Hayteret al.
@32,33# who successfully derived an analyticalS(q) from
f00(r ) within the mean spherical approximation~MSA!, and
demonstrated its applicability by applying the derivedS(q)
to study the structures of micellar dispersions@34#. In spite
of its apparent success, the OCM has, however, been q
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tioned for some non-negligible colloidal features missing
the theory. Questions such as the finite size of counteri
~co-ions!, which would lead to important effects on correl
tions between macroions, the low-densityr0 limit, which
casts doubt on its validity at high colloidal concentration
the dependence off00(r ) on h, etc., were raised in the lit-
erature. In an attempt to remedy these apparent drawb
Medina-Noyola and McQuarrie@35# compared thef00(r ) in
the OCM with that in the original primitive model, which i
a model solution with macroions and small ions treated on
equal footing. Within the MSA, they showed that thef00(r )
of OCM can be deducedexactly from the primitive model
and, with further analysis, they succeeded in deriving an
plicit expression for thef00(r ) of two interacting colloidal
particles embedded in a solution of finite-sized ions. In
separate work, Medina-Noyola@36# extended the same ap
proach to the case of a salt-free suspension at any finite
loidal concentration but confined his analysis to the ‘‘den
point limit’’ by taking Zi /Z0→0. A theoretically more ap-
pealing work was reported by Beresford-Smith, Chan, a
Michell @37,38# who applied the prescription of McMillan
and Mayer@39# to construct aneffectiveone-component di-
rect correlation function ĉeff(q) @defined by ĉeff(q)5@1
21/S(q)#/r0# from an asymmetric multicomponent electr
lyte system. Specifically they proposed a ‘‘jellium’’ approx
mation, which is a simplifying means to describe the cor
lation between a tagged colloidal particle and a small
carried out by ignoring at the same time correlations amo
the remaining colloidal particles. For colloidal particles, th
obtained af00(r ) with the coefficientL5LDLVO(11h).
Further analysis on the highly charged effect of colloids
them to anasymptotic form of f00(r ) having the same
Yukawa behavior but with aL that has to be determine
numerically by solving a differential equation. This ‘‘jel
lium’’ approximation was improved in the following year b
Belloni @40# by replacing the jellium approximation for mac
roions with its discrete counterparts and in this environm
accounted for the macroion–small-ion correlations using
analytical results of Hiroike@41#. For point ions, he suc-
ceeded in ‘‘identifying’’ naturally a one-component Yukaw
form for f00(r ) and derived an analyticallyexactexpression
for the coupling strengthL. His numericalS(q) results indi-
cated clearly the equivalence between the primitive mo
and OCM under certain colloidal conditions~such as for
pointlike small ions, significantly large asymmetry in sizes
macroions and ions, etc.!. Concurrently, inspired by the latte
work and motivated by their need for an analyticalS(q) for
interpreting measuredS(q), Chenet al. @42# revisited this
problem of the equivalence between the OCM and primit
model within MSA; they pointed out that thef00(r ) given
by Belloni is in fact, as in the dilute limit of the DLVO
theory, the effective direct correlation functionĉeff(q) of col-
loidal particles without necessity to invoke the MSA closu
Accordingly they analyzed the mathematical structure of
screened Coulomb potentialf00(r ) and exploited the factor
Z0L appearing in Eq.~1! fully. This so-called generalized
OCM has thus been used by them to interpret the obse
S(q) of proteins in place of the usual DLVO theory. In su
sequent development, different efforts that aim at more g
eral studies of colloidal systems were reported. These
cluded focusing on the multicomponent nature of colloid
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systems@43#, reexamining quantitatively the effect of hig
Z0 for macroions and its related consequences on the no
ditivity radii of macroion–small-ion correlation@44#, incor-
porating largerh and finite size of small ions@45,46#, testing
various closures@47#, simplifying solutions for Yukawa mix-
tures with factorized coupling constants@48,43#, exploring
the physical roots for the analytical solutions@49,50#, etc.
Despite these endeavors, it would be, however, notewo
to mention two earlier works. The first one is the study
S(q) by Ronis@51# who applied a mixture of hard spheres
combination with the Gibbs-Bogoliubov inequality to a sy
tem of highly charged colloids at a low ionic strength. Usi
the Percus-Yevick hard-spheres mixture as a reference
tem, he determined the best hard-sphere diameters
mimic a suspension of charge-stabilized particles. For
case of additive diameters, he was able to account for
experimentalS(q); his approach failed for the more realist
case of nonadditive diameters. The second one, which
mentioned above, is a similar calculation by Khanet al. @44#
who derived an analytical Yukawa potential for an effecti
OCM for macroions. The most important aspect of this wo
is that the nonadditive property for the macroion–small-
correlation is explicitly included and was shown by the a
thors to yield a reasonably good description forS(q). It ap-
pears that thisS(q) theory of Khanet al. is quite successfu
for studying theS(q) of the highly charged colloids an
micellar solutions at lowh ; it is not clear if the theory works
well for cases of high volume fractions. Nonetheless, b
these calculations clearly point to the importance
macroion–small-ion correlations in the study of colloi
colloid structure. In more recent years, statistical-mechan
studies of theS(q) of charge-stabilized colloids have no
progressed very far from the above brief review. There
more refined works reported that deal with high asymmet
of particles in both size and charge~for a more recent work
see@52#!. These calculations generalize or modify the sa
techniques as described above.

Among all these previous and recent works it appear
us that the work by Belloni@40# contains the essential phys
ics of a concentrated suspension of charge-stabilized
ticles whoseS(q) is needed for our present study of th
phase diagram of the liquid-glass transition. In this paper
thus apply the OCM of Belloni and use the analytical so
tion of Hayter and Penfold@32# to construct the correspond
ing OCM S(q). As demonstrated below, there is an appar
inconsistency in the Debye-Hu¨ckel screening constant whe
the latter is used as a structural parameter in the OCMS(q).
This inconsistency, however, can be removed by renorm
izing the macroion charge and size subject to the condi
of charge neutralization. Once this is done, the physical
rameters in the OCMS(q) are seen to correspond to th
associated colloidal parameters in the more general cas
the primitive model@46#. Accordingly, one can easily pre
pare aS(q) under specific colloidal conditions and yet reta
the simple picture of OCM. Differing from previously pub
lished works, our study of the liquid-glass transition brin
us to the regime of concentrated colloids at both a high v
ume fractionh(*0.2) and a large macroion charge. Co
trary to one’s anticipation, we find that, for finiteh&0.43,
and depending on the strength of the Coulomb repulsion,
MSA for the pair correlation function may become unphy
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cal near the contact distance and thus needs to be reme
by a rescaling procedure@33,45,46,40#. In this work we com-
pare the ergodic-nonergodic phase boundaries in the DL
and Belloni models determined by the idealized MCT f
S(q) with and without rescaling. Although it is not the ma
purpose of this work we note that once the phase diagram
determined, one can calculate readily the mode-coup
temporal parameter from which other exponent parame
follow straightforwardly. The dynamical phenomena of a s
percompressed suspension of charge-stabilized colloidal
ticles nearmc can accordingly be investigated within th
MCT.

II. THEORY

A. Mean spherical approximation

In this section we present the MSA for theS(q) of
charge-stabilized colloidal suspensions. For point ions,
S(q) is analytically available and in conjunction with th
idealized MCT will be used to locate the ergodic-nonergo
transition loci. The dynamics of the supercompressed ph
comes as a corollary. For convenience in the following d
cussion, we give a brief summary of essential equations
lead tof00(r ) following mainly several recent works@37–
40#. In addition, we introduce in the Appendix the method
convolution, which may be useful in other contexts.

In the primitive model, one begins with a set of coupl
multicomponent Ornstein-Zernike equations given by

hi j ~r !5ci j ~r !1(
l 50

r lE hil ~ ur2r 8u!cl j ~r 8!dr 8, ~2!

where i, j, and l refer to different species:i , j ,l 50 for ma-
roions, i , j ,l 51 for counterions, andi , j ,l 52,3,... for co-
ions. Herer l is the number density for speciesl; ci j (r ) is the
direct correlation function andhi j (r )5gi j (r )21, defined in
terms of the pair correlation functiongi j (r ), is the total cor-
relation function. Thus, the primitive model is by constru
tion a mixture of charged hard spheres characterized by
ferent diameters. In the effective direct correlation functi
approach, one can show formally@39# that Eq. ~2! can be
contracted to an effective direct correlation functionc00

eff(r),
which satisfies

h00~r !5c00
eff~r !1r0E h00~ ur2r 8u!c00

eff~r 8!dr 8, ~3!

where, in the Fourier-transformed space,c00
eff(q) can be writ-

ten as

ĉ00
eff~q!5 ĉ00~q!1 ĉ0

T
•@12 ĉ* #21

• ĉ0 . ~4!

In Eq. ~4! ĉ0 is a column matrix defined by

~ ĉ0! i5r i
1/2ĉ0i~q!, i 51,2, . . . , ~5!

which describes the macroion–small-ion correlations,1 is a
matrix, and ĉ* is a matrix giving the small-ion–small-ion
correlations, viz.,

~ ĉ* ! i j 5r i
1/2r j

1/2ĉi j ~q!, i , j 51,2, . . . . ~6!
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For pointlike ions, the direct correlation functionci j (r ), i , j
50,1,2,... can be written in terms of the short-rangeci j

s (r ) as
@41#

ci j ~r !5ci j
s ~r !2

ZiZjLB

r
, r .0 ~7!

wherec00
s (r )50 for r .s0 , and

ci j
s ~r !50 ~ i , j 51,2, . . .! r .0, ~8!

c0i
s ~r !50 ~ i 51,2, . . .! r .s0/2. ~9!

If we take the Fourier transform of Eqs.~8! and ~9!, apply
them to Eqs.~5! and ~6!, and substitute the results into E
~4!, we obtain

ĉ00
eff~q!5 ĉ00

s ~q!1(
i 51

@c0i
s ~q!#22

@a01( i 51a ic0i
s ~q!#2

q21k2 .

~10!

Here, a i
254pLBr iZi

2 and k5(( i 51a i
2)1/2. Next, we per-

form the inverse Fourier transform of Eq.~10!; the first and
second terms vanish identically forr .s0 while for the third
terms they can be convoluted~see Appendix for details! to
yield

c00
eff~r !52Z0

2LBX2
e2kr

r
, r .s0 , ~11!

where

X5coshS k

2D1UFk

2
coshS k

2D2sinhS k

2D G ~12!

in which

U5
8d

k3 2
2n

k
, ~13!

with

d5
3h

12h
, ~14!

n5
Gs0/21d

11Gs0/21d
, ~15!

and

G25k21
a0

2

~11Gs0/21d!2 . ~16!

GivenZ0 , s0 , k, andh, Eq. ~16! has to be solved iteratively
for G and henceX in Eq. ~12!. It is interesting to note tha
X→LDLVO in the limit r0→0. On the other hand, for a give
X, Eq. ~11! is similar in form to Eq.~1! and as was pointed
out by Chenet al. @42# Eq. ~11! resembles the MSA closur

gi j ~r !50, r ,s i j , ~17!

ci j ~r !52bf i j ~r !, r .s i j ~18!
if one identifies the right-hand side of Eq.~11! to be an
effective interparticle potentialbf00

eff(r) for macroparticles,
and definess0i5s0/2. This identification is natural, and
practically, it is necessary and convenient since analyt
solution @32,33# of S(q) within MSA exists. Note that Eq.
~18! in the form defined is customarily considered as a l
earized closure relation, which is correct for a low charg
system and becomes less reliable for polyelectrolyte syst
at low concentration. It was, however, implicit in the work
of Beresford-Smithet al. @37#, Belloni @40#, and Chenet al.
@42# that, within the effective direct correlation functio
scheme, such basic assumptions can be relaxed. Thus th
of Eq. ~11! does not necessarily imply a case for a polyele
trolyte system of low concentration since the neededS(q)
can be obtained by

S~q![S00~q!5
1

@12r0ĉ00
eff~q!#

, ~19!

which is essentially a OCM.

B. Mode-coupling approximation for a colloidal dispersion

The MCT focuses on the time-dependent density-den
correlation function defined by

F~q,t !5^dn~q,t !dn~2q,0!&, ~20!

wheredn(q,t) is the Fourier transform of the microscop
density fluctuationdn(r ,t) and^ & is the usual ensemble av
erage. This function spatially contains useful information
the local structure of colloidal particles and temporally a
counts for its time evolution. Defining the Laplace transfo
by F̂(q,z)5*0

`dt exp@2zt#F(q,t) and neglecting hydrody-
namic interactions, it can be shown@27,26,25# that F̃(q,z) is
related to a memory functionM̂ (q,z) by @53#

R̂~q,z![
F̂~q,z!

S~q!
5

1

z1v~q!@12M̂ ~q,z!/~q2D0!#
,

~21!

wherev(q)5q2D0 /S(q) andD0 is the Stokes-Einstein dif-
fusion coefficient of a single particle. As discussed in@27#,
F(q,t) consists of a short-time~t I@t@tB , where for typical
aqueous colloidal suspensionstB'1029– 1028 s and t I
'1023 s! decaying component representing a Brownia
type motion and of a long-time (t@t I) slowly decaying part
P(q,t) characterizing collective nonlinear couplings of th
sluggish behavior ofF(q,t). It was pointed out, however, by
Cichocki and Hess@26# that the memory functionM̂ (q,z) in
Eq. ~21! is not an elementary memory function in the stu
of dynamic properties of colloidal particles since its tim
evolution operator is not one-particle irreducible. By com
paring the generalized dynamic viscosity obtained from
generalized Smoluchowski equation and a Fokker-Pla
equation, they were able to derive a formally exact relat
betweenM̂ (q,z) and an irreducible collective memory func
tion M̂(q,z). Now, at high densities, the slowly decayin
componentM̂(q,z)'P(q,t) is manifestly dominant com-
pared with the short-time contribution. In fact it can be i
ferred from the works of Szamel and Lo¨wen @25#, Bauret al.
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3076 PRE 58S. K. LAI AND G. F. WANG
@27#, Kawasaki@28#, and Bengtzeliuset al. @5# that an ideal-
ized liquid-glass transition sets in at a dynamical transit
point mc if there exists a solutionf c(q) for the following
nonlinear vitrification equation:

f ~q!

12 f ~q!
5

S~q!

D0q2 P~q,t5`!5Fq„f ~k!…. ~22!

The f c(q)5R(q,t→`)Þ0 is the Debye-Waller factor cor
responding to the nonergodic state whereasf (q)50 is the
ergodic state. We note thatf (q) can be compared directl
with experiment since it corresponds to the form factor
the elastic part of the coherent spectrum in neutron scatte
experiments. This function also accounts for the nondiffus
states as the liquid phase approaches the glassy region
making a two-mode approximation as in atomic liqu
@54,5#, the more fundamental long-time memory functio
P(q,t) can be derived to read@25,27#

P~q,t !5
D0r0

8qp2 E
0

`

dxxE
ux2qu

ux1qu
dyyS x22y2

2q
@c~x!2c~y!#

1
q

2
@c~x!1c~y!# D 2

S~x!S~y!R~x,t !R~y,t !,

~23!

where c(q) is the direct correlation function. It should b
emphasized that Eq.~23!, which is derived for a colloidal
suspension, has exactly the same form as that for an ato
liquid ~cf. Eq. ~19! @25# with Eq. ~2.4! in @55#!. GivenS(q),
Eqs. ~22! and ~23! constitute the two coupled equation
which will be used below to locate the liquid-glass transiti
loci.

III. NUMERICAL RESULTS AND DISCUSSION

We now apply the effective direct correlation functio
c00

eff(r), which is identified to be an effective potenti
2bf00

eff(r) by Eq.~11!. This defined potential encompasses
remarkably rich phase behavior with fluid structures exhib
ing very short-ranged~characterized by the hard-cores0 or
the volume fractionh5ps0

3r0/6!, intermediate-ranged~dic-
tated by the screened Coulomb parameterk5ks0!, and very
long-ranged~described by the chargeZ0! interactions. Now
in order to locate the ergodic-nonergodic transition loci
solving Eqs.~26! and ~27! iteratively and self-consistently
for f c(q), we need the fluid static structure factors of E
~11!. Within the MSA for pointlike small ions the latter ca
formally be calculated from the primitive model whos
structure factor was shown by Belloni@40# to beexactlythe
same as that in the OCM. The calculation, though theor
cally straightforward when applied in conjunction with th
MCT in deducing the parametric phase diagram, is, howe
useful only for specific colloidal suspensions. In view of th
we have resorted to a more general means by employing
OCM S(q). Strategically, one starts first by applying th
idealized MCT to determine the phase boundary of
OCM-type potential given by Eq.~1! whose static structure
factor@32# is uniquelydetermined for properly scaled param
eters (h,k,ḡ!. Then, from the determined (hc ,kcgc), we
examine the necessity of rescaling for macroions at con
n
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following the recipe of Sheuet al. @56# and of Hansen and
Hayter @33#; we deduce for pointlike ions theZ0 , s0 , and
associated quantities in the OCM of Belloni@40# under
physically reasonable conditions.

A. S„q… in rescaled mean spherical approximation

As pointed out in the Introduction, we will encounter
situation where the pair correlation functiong(r ) may be-
come unphysical at the minimum distance of contactR
511 where we defineR5r /s0 . This unpleasant feature
arises from the inadequacy of MSA in accounting for t
short-range correlation. To overcome this inherent d
ciency, both the numerical method of Belloni@40# and Sheu
et al. @56# and the analytical formula of Hansen and Hay
@33# were attempted. For the numerical means, we proc
as follows. First, the analyticalS(q) of Hansen and Hayte
@33# at (h,k,ḡ) is Fourier transformed to obtain theg(r ). If
the macroions at contact are positive, i.e.,g(R511).0, we
accept theS(q), otherwise we employ the rescaling tec
nique by increasingh to h85h1Dh and accordinglyk8
5k(h8/h)1/3 at the same coupling constantḡ8
5ḡ(h/h8)1/3. Next, the rescaledS(q) is Fourier trans-
formed again andg(R511) is examined. If it is negative
we repeat the procedure by increasingDh. If, however,
g(R511).0 we choose a smallerDh and repeat the nu
merical computation forS(q). The calculation proceeds unt
the criteriong(R511)50 is achieved. It should be empha
sized that this rescaling scheme automatically guarantee
coupling constantL in either the Belloni or DLVO model to
remain unchanged. In other words, the rescaling only app
to the macroion-macroion correlation so that the poten
f00

eff(r) for distance greater than the rescaled size is unp
turbed, and any macroion-ion correlation should not be p
turbed during the renormalization. For the analytical mea
we apply the formula

gh~R511!52~p11p2C1p3F !, ~24!

where pi , C, and F are coefficients defined in terms o
(h,k,ḡ) @33#. The rescaling parameters (h8,k8,ḡ8) are de-
fined as described above except that their values are d
mined by resorting to Eq.~24! and gh8(R511)50. In all
our calculations these two methods agree almost exactly
a means to assess the present model, we depict in Fig. 1
rescaled MSA~RMSA! S(q) compared with that of the
hypernetted-chain closure@57# and with that of Senatore@58#
using the model of Khanet al. @44#. These results show tha
the present model of Belloni is as good a choice forS(q) as
the latter.

B. Ergodic-nonergodic phase diagram

To begin with we consider a concentrated suspension
charge-stabilized colloids described by parameters typic
encountered in aqueous macroion solutions, namelyT
5298 K, e578.3, ands055 nm. Under these physical con
ditions, we start with the strong screening casek56 and for
h in the range 0.55.h.0.15 vary ḡ for selectedh until
nonergodic solutions are found. In the parametric space
(h,k,ḡ) this procedure traces out the dynamical transit
loci mc5(hc ,kc ,gc) separating the ergodic regimef (q)
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50, h2ḡ,hc2gc, from the nonergodic regimef c(q)Þ0,
h2ḡ>hc2gc. The same numerical process was repea
for a weak screening casek53. Figures 2~a! and 2~b! show
our results of computations for the above two cases. F
these figures it was found, however, thatg(R511),0 for
hc&0.43, which implies an inadequacy ofS(q), although
Eqs.~22! and ~23! less reliably predict a loci of nonergodi
form factors. In view of this unsatisfactory drawback, w
first apply the rescaling scheme to theseS(q) and check for
each (h,k,ḡ) the magnitude of the eigenvalue~equal to one
at mc! to see what changes should be made toḡ. Then, at
given kc andhc , we vary ḡ by ḡ1Dg. This set of param-
eters (hc ,kc ,ḡ1Dg) are then subject to the rescaling pr
cess andgc is subsequently located by substituting the r
caled S(q) at (h8,k8,ḡ8) into Eqs. ~22! and ~23!. The gc
thus calculated are displayed in the same Figs. 2~a! and 2~b!.
Note that for a Yukawa potential and for properly scal
parameters these twohc2gc curves areuniversal. Thus,
given k53 or 6, one may read from Figs. 2~a! and 2~b! the
one-to-one correspondence betweenhc andgc.

At this point we should draw attention to an appare
inconsistency in both Figs. 2~a! and 2~b!. The inconsistency
lies in the use of fixeds055 nm, which, for anyhc , will
yield a Debye-Hu¨ckel screening constantk5k/s0 that when
evaluated at eitherk53 or 6 generally differs from the for
mula k5@4pLBS i 51r iZi

2#1/2 ~supplemented by the charg
neutralization conditionr0Z05r1Z1!. Such a difference ink
arises from the less quantitative nature of the OCM~notably
for the DLVO approximation! and is implicit in several re-
cent theoretical models proposed in the literature@59#. Physi-
cally this would imply that the value for the macroion si
s0 and Z0 needs readjustments in order to compensate
the difference ink. Technically this can be accomplished b
preparing for a list ofs0

( j ) in the range 10&s0
( j )&6000 Å the

sequence of parametersr0
( j )56hc /(ps0

( j )3), k ( j )5k/s0
( j )

and Z0
( j ) ~via k ( j )5@4pLBS i 51r iZi

2#1/2 and r0
( j )Z0

( j )5r1Z1!

FIG. 1. Static structure factorS(q) of a suspension of charge
stabilized colloids obtained using the method described in text~full
curve! with the approximate treatment of the finite-size effect
counterions@40# compared with those calculated from hypernette
chain closure@57# ~open squares! and from RMSA model of Sena
tore @58# ~closed circles!. The latter twoS(q) are read directly from
Fig. 2~b! of Ref. @58#. Parameters used ares0 /s1550/5 Å,
Z0 /Z15240/1e, andr0 /r152.531023/10031023M .
d

m

-

t

r
at k53 or 6, and for each selectedhc , these parameters ar
~a! substituted in the Belloni model into Eqs.~12!–~16! to
solve iteratively forX( j ) and ~b! employed directly in the
DLVO model to obtainLDLVO . Next, we read from Fig. 2~a!
or 2~b! the gc that corresponds to the specifichc and in
conjunction with the coupling strengthgc of Eq. ~11!, i.e.,

-

FIG. 2. ~a! Volume fractionhc vs surface charge parametergc

for screening parameterk53 in MSA ~circles! and in RMSA~tri-
angles!. ~b! Same as~a! but for k56. ~c! Comparison of the loci of
phase diagrams fork53 ~circles! andk56 ~triangles!.
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Z0
( j )82L ( j )2LB5s0

( j )gc, extract theZ0
( j )8 . This Z0

( j )8 is com-
pared with theZ0

( j ) and the whole procedure is repeated

eachs0
( j ) in the list until the criterionuZ0

( j )2Z0
( j )8u<1027 is

achieved. Figure 3 is the flow chart dictating the details
the procedure. Note that, in the list-searching process,
consider only counterions~each with ionic chargeZ151e!
for the ionic strength ink, and thes0 is relaxed to ensure th
phase diagram associated with thesamecoupling strength
ḡc .

We now comment on Figs. 2~a! and 2~b!, which give the
variation ofhc with gc. We note two general features. Firs
for the two screening cases of interest here one notices q
substantial difference in the ergodic-nonergodic ph
boundaries for the MSA with and without rescaling. For t
MSA, after an initial decreasing tendency~for 0.51.hc
*0.43!, hc changes abruptly fork53 and is almosth inde-
pendent fork56. This behavior is in contrast to the RMS
where hc decreases monotonously for the whole range
values 0.5.hc*0.15. Second, as Fig. 2~c! shows, the er-
godic region for the strong screening case has an exten
region whereas in the weak screening case its domain is
tively more restrictive. The first general feature for t
RMSA can be understood from two facets—the change ingc

FIG. 3. Flow chart showing the procedure in achieving a s
consistent Debye-Hu¨ckel screening constant. Values of macroi
charge and size for DLVO and Belloni models~see text! are ad-
justed to satisfy charge neutralization condition.
r

f
e

ite
e

f
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with k and with the macroion charge ands0
c . It would, how-

ever, be more instructive and concrete if these depende
were analyzed in terms of specific models, namely,s0

cgc

5Z0
c2X2LB for the Belloni model ands0

cgc5Z0
c2LDLVO

2 LB

for the DLVO model. We show in Fig. 4 the change ofhc
with X or LDLVO at k53 and 6. There are distinct differ
ences in these coupling constants—X decreases in magnitud
and approachesLDLVO as hc decreases whereasLDLVO ,
which is a function only ofk, is independent ofhc . To
interpret the quantitative changes in thehc-gc curves withk
one needs, however, to consider the variation ofhc with the
macroion charge as well as withs0

c . Figures 5 and 6 display
the details of these structures. It is readily seen in Figs. 5~c!
and 6 that atk53 although drastic differences are observ
between the rescaledhc2Z0

c (s0
c2Z0

c) and hc2Z0
c (s0

c

2Z0
c), the associated change ofZ0

c2/s0
c or Z0

c2/s0
c ~with h!

on whichgc is directly proportional does not vary greatly i
magnitudefor both OCM ~see Fig. 7!. On the other hand
Figs. 5~d! and 6 between the corresponding quantities
k56 differ much less severely but both the Belloni a
DLVO models show a strong enhancement inmagnitudeof
the Z0

c2/s0
c or Z0

c2/s0
c compared with the weak screenin

cases. These dependences thus account partly for the v
tion of hc with gc in either the Belloni or DLVO model. As
regards the second feature, it can be explained by the ph
cal significance ofk, which is a screening parameter dete
mined sensibly by the ionic strength of small ions now pla
ing the role of charge stabilizing the macroparticles. Sin
the casek56 corresponds to a greater accumulation of io
density for the Coulomb interactions between macroions
be effectively screened out, and that the above results for
X (LDLVO) and Z0

c2/s0
c (Z0

c2/s0
c) clearly point to a marked

increase in magnitude ofgc with k, it is thus reasonable to
see the strong screening case occupying a larger ergodi
gion.

To pursue our analysis further, we now scrutinize
greater detail Fig. 5~a! for the change ofhc with chargeZ0

c

determined byḡ5Z0
2X2LB /s0 and Fig. 5~b! for the change

of hc with chargeZ0
c deduced fromḡ5Z0

2LDLVO
2 LB /s0 . In

-

FIG. 4. Volume fractionhc vs coupling parameterL @Eq. ~1! in
text# which is X ~circles! in Belloni model andLDLVO ~full curves!
in DLVO model for casesk53 ~left curves! and k56 ~right
curves!.
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FIG. 5. ~a! Volume fractionhc vs macroion chargeZ0
c ~in units of electronic charge! in the Belloni model for screening parametersk

53 ~circles! andk56 ~triangles!. ~b! Same as~a! but for th e DLVO model.~c! Comparison of the volume fractionhc vs macroion charge,
Z0

c for Belloni ~triangles!, andZ0
c for DLVO ~circles! models atk53. ~d! Same as~c! but for k56.
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addition, we examine also within the context of RMSA t
relationsZ0

c2s0
c and Z0

c2s0
c given in Figs. 6~a! and 6~b!.

Two distinct aspects are observed.
~a! The RMSA results forhc-Z0

c curves in the Belloni
model displayed in Fig. 5~a! for the strong and weak screen
ing cases decrease monotonously and span over 56e&Z0

c

&396e for k53 and 31e&Z0
c&414e for k56. In contrast,

the correspondinghc-Z0
c curves in the DLVO model de

picted in Fig. 5~b! for the strong screening case decrea
monotonously while that for the casek53 it is virtually
unchanged forhc*0.43 and becomes nearly independent
h for hc,0.43. As a result the weak screening casek53
associated with the DLVO and Belloni models shows
marked difference in structures@Fig. 5~c!# compared with the
strong screening cases@Fig. 5~d!#.

~b! For eachhc-Z0
c phase boundary given in Fig. 5~a!

each dynamical transition point (hc ,Z0
c) corresponds to as0

c

@Fig. 6~a!# determined as described in Fig. 3, while those
hc-Z0

c @Fig. 5~b!# the correspondings0
c are given in Fig.

6~b!. As can be seen easily the magnitude ofs0 for k53 is
significantly larger than the casek56.

The origin of the first aspect can be traced to the corre
tion between macroions and small ions, which was here
s

f

f

-
x-

actly taken into account for pointlike ions through Eq.~10!
and which has resulted in the strong dependence ofh on Z0

c

~via the functionX!. For the casek53, ionic screening is
comparatively less effective, which will thus increase t
macroion chargeZ0

c . This ineffective screening effect isfur-
ther enhancedby the strong dependence ofX on h @in con-
trast to the DLVO model whereLDLVO5exp(k/2)/(1
1k/2)#, since the presence of other macroions has the c
sequence of decreasing the screening ability of small i
@40# ~and hence increasingZ0

c!. Structural changes are there
fore induced by a delicate balance between the hard-c
repulsion and strong electrostatic coupling particularly n
higher volume fractions. For the DLVO model,LDLVO does
not depend onh and thus has no relevance toZ0

c. The geo-
metric hard-core factor in this weak screening case do
nates the structure forhc*0.43, but its role is taken over b
the Coulomb repulsion forhc&0.43, which is found to be
independent ofh. On the other hand for the Belloni modelX
deviates fromLDLVO and has a robust dependence onh ~and
henceZ0

c!, which is manifested by an effective influence
the electrostatic coupling compared with the excluded v
ume effects. This explains the marked difference in behav
for the two weak screening cases given in Fig. 5~c!. Never-
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theless, it is interesting to remark that for both weak scre
ing cases in Fig. 5~c!, ash decreases to lower values the ro
of intermediate- and long-ranged interactions manifests,
structural changes are now characterized by the relative
portance of these latter two factors. This accounts for
general tendency of merging for the set ofhc-Z0

c andhc-Z0
c

curves atk53 ash decreases. Turning to the casek56 @Fig.
5~d!#, here we have relatively many small ions surround
the macroparticles, and the effective screening effect
tend to reduce the subtle role ofZ0

c , making its contribution
to structure inconsequential. One would therefore exp
qualitatively similar structures for the Belloini and DLVO
models with finer details being quantitatively embellished
the h dependence ofX.

Coming to the second aspect, this can be explained
follows. For the casek53 the ionic screening effect leads
a relatively stronger electrostatic force and this would im
a larger macroion charge~and hence a longer interactio
range!, which then acts to degrade the role of geometric h
core. For a given surface charge parameterḡ, the s0 must
increase enormously at a constantL, which must be so since
the latter physically accounts for the macroion-ion corre
tions. This, however, is in opposition to the casek56 where

FIG. 6. ~a! Macroion chargeZ0
c vs macroion sizes0

c in the
Belloni model determined as described in the flow chart of Fig
for screening parametersk53 ~circles! and k56 ~triangles!. ~b!
Same as~a! but for the DLVO model.
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the comparatively larger effective screening effect has c
siderably weakened the Coulomb repulsions~and henceZ0

c

or Z0
c! between macroparticles and thes0 increases less

wildly. It should be emphasized that such a change ins0 is
to rectify the inconsistency of the OCM for the invers
screening lengthk and should not be confused with the re
caling idea proposed by Hayter and Hansen@33# for handling
the dilute dispersion of colloids at strong electrostatic co
pling. The former leads to a real physical size of a mac
particle whose value was adjusted even at highh while the
latter describes a macroparticle surrounded by an imp
etrable volume.

IV. CONCLUSION

The structures of concentrated charge-stabilized collo
dispersions were investigated using the OCM in the m
spherical approximation. Within the idealized mod
coupling theory, the loci of the liquid-glass transition pha
boundaries were determined. It was found that forhc
&0.43 and for strong Coulomb coupling theg(r ) at contact
distance in the MSA becomes unphysical and needs to
rescaled. Both theS(q) with and without rescaling were
compared to manifest the inadequacy of the MSA closure
the specific region of parametric phase space. In attemp
to explore the usefulness of the OCM, we notice an appa
inconsistency in that the Debye-Hu¨ckel screening constantk
that is defined parametrically in OCM generally differs fro
that defined in the primitive model in terms of physical p
rameters. In other words, for a given macroion size, thek
employed in the OCM calculation may be physically unre
istic. Removal of the latter inconsistency has led us to
ergodic-nonergodic phase diagram corresponding to ma
ions of different size and charge distribution. Finally, w
compare generally the widely used DLVO model and t
more refined model of Belloni. We judge from our calculat
phase diagrams that the OCM of Belloni is physically sou
and appropriate for extensive studies of charged collo
structures and, within the mode-coupling theory, of the d
namics of high density colloids.

FIG. 7. Volume fractionhc vs electrostatic potentialC, which is
C5Z0

c2/s0
c for Belloni or C5Z0

c2/s0
c for DLVO at k53 in the

Belloni ~triangles! and the DLVO~circles! models compared with
those atk56 in the Belloni ~plusses! and the DLVO ~squares!
models.

3
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APPENDIX

In this Appendix, we derive the effective direct correl
tion functionc00

eff(r) by the method of convolution. We begi
with the convolution of functionsu(r ) andv(r ) defined by

G~u+v !5E v~j!u~r2j!dj. ~A1!

For the problem at hand,c00
eff(r)5G21@c00

generally eff(q)# for r
.s0 , which can be obtained using the formula

1

r0
G21S 1

q21k2D5Q~r !5
1

4pr0

e2kr

r
, ~A2!

defining W1(r )5a0
2Q(r ), W2(r )52a0a iQ(r ), andW3(r )

5a ia jQ(r ), and recalling thatc00(r )5c0i
s (r )50 for r

.s0 . Accordingly an expression forc00
eff(r) can be derived

c00
eff~r !5W1~r !1~r0r i !

1/2W2+c0i
s

1~r0r i !
1/2W3+$~r0r i !

1/2@c0i
s +c0 j

s #% ~A3!
H

er
t
y
,
e
l
.

-
-
,

provided the convolutionsC5G@c0i
s +c0 j

s #, G@W2+c0i
s # and

G(W3+C) can be determined. To calculate these we note

C52pE
jm

jME
um~j,r !

uM~j,r !

c0i
s ~j!c0 j

s ~u!
ju

r
djdu

52pE
jm5r 2a

jM5a E
um5r 2j

uM5a S ci1
Z̃i

j
D S cj1

Z̃j

u D ju

r
dj du

12pS E
jm5r

jM5aE
um5j2r

uM5a

1E
jm5a2r

jM5r E
um5r 2j

uM5a

1E
jm50

jM5a2r E
um5r 2j

uM5r 1j D S ci1
Z̃i

j
D S cj1

Z̃j

u D ju

r
dj du

12pS E
jm5a2r

jM5a E
um5j2r

uM5a

1E
jm5r

jM5a2r E
um5j2r

uM5j1r

1E
jm50

jM5r E
um5r 2j

uM5j1r D S ci1
Z̃i

j
D S cj1

Z̃j

u D ju

r
dj du,

~A4!

where Z̃i5Z0ZiLB ; ci51/(h21)2nZ̃i /a @41#; jM , jm ,
uM , andum are the limits of integration variables subject
the constraintr .s0 . Similarly

G@W2+c0i
s #52pE

jm50

jM5aE
um5r 2j

uM5r 1j

3
e2kr

r S ci1
Z̃i

j
D ju

r
dj du,

and G(W3+C) is obtained by convoluting Eqs.~A2! and
~A4!.
P.
@1# P. N. Pusey and W. van Megen, Nature~London! 320, 340
~1986!.

@2# Y. Yang and K. A. Nelson, Phys. Rev. Lett.74, 4883~1995!.
@3# J. Wuttke, M. Kiebel, E. Bartsch, F. Fujara, W. Petry, and

Sillescu, Z. Phys. B91, 357 ~1993!.
@4# X. C. Zeng, D. Kivelson, and G. Tarjus, Phys. Rev. Lett.72,

1772 ~1994!; W. van Megen and S. M. Underwood,ibid. 72,
1773 ~1994!; X. C. Zeng and D. Kivelson, Phys. Rev. E50,
1711~1994!; H. Z. Cummins and G. Li,ibid. 50, 1720~1994!.

@5# U. Bengtzelius, W. Go¨tze, and A. Sjo¨lander, J. Phys. C17,
5915 ~1984!.

@6# R. Schmitz, J. W. Dufty, and P. De, Phys. Rev. Lett.71, 2066
~1993!.

@7# J. Yeo, Phys. Rev. E52, 853 ~1995!.
@8# T. Odagaki, Phys. Rev. Lett.75, 3701~1995!.
@9# W. Götze, in Liquids, Freezing and the Glass Transition, ed-

ited by J. P. Hansen, D. Levesque, and J. Zinn-Justin~North-
Holland, Amsterdam, 1991!, p. 287; W. Go¨tze and L. Sjo¨gren,
Rep. Prog. Phys.55, 241 ~1992!.

@10# J. L. Barrat, W. Go¨tze, and L. Latz, J. Phys.: Condens. Matt
1, 7163~1989!.
.

@11# M. Fuchs, I. Hofacker, and A. Latz, Phys. Rev. A45, 898
~1992!.

@12# S. K. Lai and S. Y. Chang, Phys. Rev. B51, R12869~1995!.
@13# U. Bengtzelius, Phys. Rev. A34, 5059~1986!.
@14# W. J. Ma and S. K. Lai, Physica B233, 221 ~1997!.
@15# S. K. Lai and H. C. Chen, J. Phys.: Condens. Matter5, 4325

~1993!.
@16# S. K. Lai and H. C. Chen, J. Phys.: Condens. Matter7, 1499

~1995!.
@17# H. C. Chen and S. K. Lai, Phys. Rev. E56, 4381~1997!.
@18# J. Bosse and J. S. Thakur, Phys. Rev. Lett.59, 998 ~1987!;

Phys. Rev. A43, 4378~1991!; 43, 4388~1991!.
@19# W. Kob and H. C. Andersen, Phys. Rev. Lett.73, 1376~1994!.
@20# Y. Kaneko and J. Bosse, J. Phys.: Condens. Matter8, 9581

~1996!.
@21# W. J. Ma and S. K. Lai, Phys. Rev. E55, 2026~1997!.
@22# S. Kämmerer, W. Kob, and R. Schilling, Phys. Rev. E56,

5450 ~1997!.
@23# T. Franosch, M. Fuchs, W. Gotze, M. R. Mayr, and A.

Singh, Phys. Rev. E56, 5659~1997!.



s.

u
ric
he

.

J.

pl.

s.

g

-

3082 PRE 58S. K. LAI AND G. F. WANG
@24# S. K. Lai, W. J. Ma, W. van Megen, and I. K. Snook, Phy
Rev. E56, 766~1997!. A preliminary study of the liquid-glass
transition phase diagram within the DLVO potential~see text!
was given in this work. Equations~2!–~4! given there should
respectively be replaced more correctly by Eqs.~21!–~23!
here. The latter equations are appropriate for a colloidal s
pension. These changes, however, do not affect the nume
values for the idealized liquid-glass transition loci since t
solidification equation remains unchanged~rigorous justifica-
tion is given in Refs.@25#, @27#, and@28#!.

@25# G. Szamel and H. Lo¨wen, Phys. Rev. A44, 8215~1991!.
@26# B. Cichocki and W. Hess, Physica A141, 475 ~1987!.
@27# P. Baur, G. Na¨gele, and R. Klein, Phys. Rev. E53, 6224

~1996!; Physica A245, 297 ~1997!.
@28# K. Kawasaki, Physica A208, 35 ~1994!; Butsuri, Bull., Phys.

Soc. Jpn.! 48, 869 ~1993! ~in Japanese!.
@29# E. J. Verwey and J. G. Overbeek,Theory of the Stability of

Lyophobic Colloids~Elsevier, Amsterdam, 1948!.
@30# M. J. Grimson and M. Silbert, Mol. Phys.74, 397 ~1991!.
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